Quantcast
Channel: コールセンタージャパン・ドットコムは、CRM/コールセンター構築・運営のための専門サイトです
Viewing all articles
Browse latest Browse all 4163

[導入事例] QA ENGINE / Studio Ousia

$
0
0
 

QA ENGINE

Studio Ousia
 
詳細を見る
対象ユーザーあらゆる業種に対応
対象規模規模の大小問わず
製品形態質問応答システム
価格情報個別見積り
製品概要「QA ENGINE」は機械学習やディープラーニングを用いた質問応答システムだ。人工知能が自然文の質問を理解し、瞬時に回答する。顧客向けのカスタマーサポートの自動化・効率化、社内ヘルプデスクの自動化に活用することができる。質問の表現の揺れに対応しやすいこと、多くの回答候補を対象にしやすいことが特徴となる。専門知識がなくても簡単に運用が可能。機械学習では学習データ作成作業が必要となるが、作成の負担が少ないこともポイントといえる。
 
  • 導入事例

<導入事例> freee

決算期の強力助っ人に「チャットボット」
“経営者のSOS”の半分は自動応答で解決

QA ENGINE

Studio Ousia(スタジオ ウーシア)

クラウド会計ソフト大手のfreeeは、Studio Ousia(スタジオウーシア)の自動応答システム「QA ENGINE」を基盤としたチャットボットサポートを「クラウド会計ソフトfreee」ユーザーサイトに開設した。現場主導で継続的にチューニングを実施し、回答精度を向上。一般的な質問をチャットボットで解決することで、確定申告前の繁忙期の業務負荷を軽減し、顧客サポート全体の迅速化を図った。今後は、他サービスでの設置や、メール業務への展開も検討している。

井上 健 氏

freee株式会社
Fastest Customer
Support
チーフスーパーバイザー
井上 健 氏

浅越 光一 氏

freee株式会社
Fastest Customer
Support
業務企画チーム
浅越 光一 氏

 クラウド会計ソフトを提供するfreeeのカスタマーサポートには、毎年、確定申告・法人決算を前に、企業の経営者から「SOSの声」が届く。内容は、一般的な経理知識からちょっとした“相談”まで幅広い。確定申告の提出期限が目前に迫る最繁忙の月では、問い合わせ数が月間3万件近くになる。

 同社のカスタマーサポートは、顧客にとっての“社外の経理担当者”として、いつでも気軽に問い合わせられるよう、チャットを主体にシフト勤務で運営している。繁忙期は管理職を含むカスタマーサポートチーム総動員のうえ、他チームのメンバーによる支援や外部パートナーの人員派遣で補強することもあった。しかし、会計ソフトのユーザー(顧客)が60万事業者を超えた2016年春、補強体制ゆえの課題が顕在化した。Fastest Customer Support業務企画チームの浅越光一氏は、「広範な会計知識が求められるため短期でのキャッチアップ(習得)が難しく、お待たせしたり、社内スタッフへのエスカレーションを要する案件が増えていました」と当時を振り返る。

 課題解決に向け、過去数年の繁忙期のコールリーズンを分析すると、「請求書の作り方は?」など、一般的かつ類似した質問の割合が一定数を占めることが判明した。「共通の回答ができる質問を自己解決してもらえれば、オペレータが複雑な質問への回答に集中できると考えました」と、チーフスーパーバイザーの井上 健氏は強調する。

機械学習を使った簡単育成 チャットボットでの解決率50%に

 2017年1月、Studio Ousia(スタジオウーシア)の機械学習を活用した自動応答システム「QA ENGINE」を採用し、会員向けサイトにチャットボットサポートを開設(画像)した。ユーザーが質問すると自動で回答を返す。答えにユーザーが満足できない場合には「担当者に質問を引き継ぐ」ボタンをクリックすると、人間のオペレータが対応するフローとなっている。入力された全ての問い合わせに対して、回答を表示した割合を表す「表示率」とチャットボットで完結した割合を表す「解決率」との推移を見ながらチューニングを繰り返し、回答精度の向上に取り組んだ。井上氏は、「チャットボットは、新人オペレータと同じ扱いです。目標に基づいて育成できなければ、かえって顧客満足を損なう」と説明する。

*freeeのチャットボットではQA ENGINEのAPIが返す確信度スコアが一定以下のものは表示されないように設定されている。したがって、質問に対して回答候補が存在しない場合や学習データが不足している場合には回答は表示されないこととなる。

会員向けサイトにチャットボット画面を設置

会員向けサイトにチャットボット画面を設置

 に機械学習によるチャットボット“育成”のプロセスを示した。具体的には、「(1)回答候補の入力」「(2)学習データの作成」「(3)機械学習の実施」に分かれる。

図 チャットボット「QA ENGINE」育成プロセス

図 チャットボット「QA ENGINE」育成プロセス

拡大画像はこちら

 (1)回答候補の入力は、既存のチャットサポートの定型文約300件を活用し、回答候補一覧を作成した。QA ENGINEは、「現場で運用が完結すること」を前提に開発されているため、データの入力は手入力かCSV形式のアップロードで可能。「Excelシートにデータをまとめるだけで完結できスムーズに進みました」(井上氏)。

 (2)学習データ(Q&A)の生成では、過去に蓄積されたチャットの応対履歴から抽出した質問データをCSVでアップロードし、QA ENGINEの運用画面で示される回答候補との紐づけを行う。浅越氏は、「紐づけたデータをチャットボットが学習することとなるため正確であることが大切ですが、通常のサポート業務に慣れているオペレータであれば簡単に対応できます」と説明する。

 (3)機械学習は「学習開始」ボタンをクリックするだけだ。上記の全てのフローが専門知識がなくてもできるところも嬉しい機能だという。運用開始後は、浅越氏の主導で、定期的にチューニングを実施。チャットボットが回答できなかった質問の回答を作成して学習データを追加したり、不要な回答候補を削除している。「チャットボットの利用傾向の確認や、回答候補の統合、内容修正などが容易にできます」(浅越氏)。

 導入当初の表示率は50%、解決率は30%。最繁忙を迎える3月は機械学習はできなかったが、その後の継続的な機械学習の実施により、2017年9月現在の時点で表示率80%、解決率50%に向上した。「学習データについて顧客応対の現場の意見を積極的に取り入れられる、現場とシステムの担当者との距離の近さも回答精度向上の要因のひとつになりました」と、井上氏は述べる。

正確な回答で問い合わせ減 他サービスやメール対応も検討

 繁忙期にあたる2017年の確定申告期は、チャットボット導入直後に迎えることとなったが、すでに効果が表れていた。

 顧客数が前年比20万増の80万事業者に増加しているため、多数の顧客を待たせる懸念があったが、予測に反して例年の20%減のスタッフ体制でカバーできた。「人員の削減割合とチャットボットで自動化できた割合は、直結するわけではありませんが、相当近いと推計しています」と井上氏。

 実際に、効果測定で1日チャットボットを停止させたところ、チャットサポートの問い合わせ件数が明らかに増えたという。「カスタマーサポートになくてはならない存在です」と、浅越氏は強調する。利用する顧客から寄せられるコメントも好評だ。「実は新しいデータを追加するごとに精度が上がるので、継続して育成すればボットが質問全体の80%までさばけるところまで頑張れるのではないかと思っています」(井上氏)。

 今後は、企業アプリへのチャットボット搭載や、メール対応業務への適用も検討している。

ユーザープロフィール

freee株式会社

所在地:東京都品川区西五反田2-8-1 五反田ファーストビル9階
設立:2012年7月
資本金:96億603万円(資本準備金など含む)
代表者:創業者・代表取締役 佐々木大輔
従業員数:400名(2017年8月)
事業内容:会計、人事労務、会社設立・開業、マイナンバー管理など、バックオフィス業務の効率化・自動化を支援するクラウドサービスの開発、提供

freee

お問い合わせ先

株式会社Studio Ousia
事業開発部
E-mail:info@ousia.jp
URL:http://www.qaengine.ai/


Viewing all articles
Browse latest Browse all 4163

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>